On random regular graphs with non-constant degree
نویسنده
چکیده
We study random r-regular labelled graphs with n vertices. For r = 0(n ) we give the asymptotic number of them and show that they are almost all r-connected and hamiltonian. Proofs are based on the analysis of a simple algorithm for finding "almost" random regular graphs. (Diversity Libraries §
منابع مشابه
Random Regular Graphs Of Non-Constant Degree: Connectivity And Hamiltonicity
Let Gr denote a graph chosen uniformly at random from the set of r-regular graphs with vertex set f1; 2; : : : ; ng where 3 r c0n for some small constant c0. We prove that with probability tending to 1 as n ! 1, Gr is r-connected and Hamiltonian.
متن کاملBalanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations
A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...
متن کاملModels of random regular graphs
This is a survey of results on properties of random regular graphs, together with an exposition of some of the main methods of obtaining these results. Related results on asymptotic enumeration are also presented, as well as various generalisations to random graphs with given degree sequence. A major feature in this area is the small subgraph conditioning method. When applicable, this establish...
متن کاملRandom Regular Graphs Of Non-Constant Degree: Independence And Chromatic Number
Let r(= r(n))!1 with 3 r n1 for an arbitrarily small constant > 0, and let Gr denote a graph chosen uniformly at random from the set of r-regular graphs with vertex set f1; 2; : : : ; ng. We prove that with probability tending to 1 as n!1, Gr has the following properties: the independence number of Gr is asymptotically 2n log r r and the chromatic number of Gr is asymptotically r 2 log r .
متن کاملIsoperimetric Numbers of Regular Graphs of High Degree with Applications to Arithmetic Riemann Surfaces
We derive upper and lower bounds on the isoperimetric numbers and bisection widths of a large class of regular graphs of high degree. Our methods are combinatorial and do not require a knowledge of the eigenvalue spectrum. We apply these bounds to random regular graphs of high degree and the Platonic graphs over the rings Zn. In the latter case we show that these graphs are generally nonRamanuj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015